Scholars Frontiers in

Nanoscience and Nanotechnology Congress

THEME: "Fostering Advancements in Nanoscience and Nanotechnology"

img2 27-28 Mar 2023
img2 Crowne Plaza Ealing, London, UK & Online
Raja Elarem

Raja Elarem

University of Monastir, Tunisia

Title: Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications


Biography

Raja Elarem is an academic researcher from University of Monastir. The author has contributed to research in topic(s): Thermal energy storage & Heat transfer. The author has an hindex of 2, co-authored 3 publication(s) receiving 21 citation(s). She is working on energetic systems integrating latent storage ; dealing with phase change materials.

Abstract

Thermophysical properties such as latent heat, viscosity and melting temperature could be changed for different physical properties of dispersed nanoparticle such as size, shape, and concentration. In this study, Nanocomposites-Enhanced Phase Change Materials NePCM are formed by dispersing Aluminium (Al) and Copper (Cu) nanoparticles into paraffin wax in various mass fractions (0.1, 0.3, 0.6, 1, 2.5 and 5%). The impact on the thermophysical properties of paraffin wax by the nanoparticles is also investigated. Heat conduction and differential scanning calorimeter experiments are used to investigate the effects of different nanoparticle concentrations on the melting point, solidification point, and latent capacity of nanocomposites. Experimental results show that the dispersion of nanoparticles of Al and Cu can decrease the melting temperature and increase the solidification temperature of PCM. this dispersion could also be limited due to increase in dynamic viscosity of the NePCM. Furthermore, Al and Cu nanocomposites with mass fractions of 2% and 1%, respectively, show better enhancements in the thermal storage characteristics of the paraffin compared to the next higher mass fraction.